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An algebraic 2-level domain decomposition preconditioner
with applications to the compressible Euler equations
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SUMMARY

A domain decomposition technique to solve large-scale aerodynamics problems on unstructured grids
is investigated. The linear system, arising when an implicit time-advancing scheme is used, is pre-
conditioned using a Schwarz-based method. The key idea of the Schwarz preconditioner is to solve
(approximately) a linear problem on each subdomain, then to exchange information only with neigh-
bouring subdomains. Unfortunately, the performance of the Schwarz-type preconditioner deteriorates as
the number of processors grows. So, in this case, a key element for obtaining a scalable preconditioner
is to provide a coarse level operator. Since many of the coarse operators proposed in literature are dif-
�cult to implement on unstructured 2D and 3D meshes, a purely algebraic procedure, that requires the
entries of the matrix only, has been developed. This procedure may be seen as an Algebraic MultiGrid
(AMG) method applied as a coarse grid correction operator. The key idea is to take advantage of the
use of local data of domain decomposition preconditioners, and of the automatic coarsening procedures
of AMG methods.
Two possible schemes to introduce the coarse grid operator will be described. Both cases have been

implemented and tested in a distributed parallel environment, using the MPI library. It will be shown
that for suitable values of the rank of the coarse grid operator it is possible to obtain a considerable
reduction in the number of iterations compared to the Schwarz preconditioner without coarse operator.
Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Let us consider the solution of the following linear system

Au= f (1)
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where A∈Rn×n is a (possibly) non-symmetric large and sparse real matrix, which is in general
ill-conditioned. Consequently, standard Krylov subspace iterative methods converge slowly (or
may even diverge if not properly preconditioned).
Although it is di�cult to �nd a general purpose preconditioner, there is an interest in

developing a class of preconditioners that is suitable for a large group of applications. In
particular, since parallel computers are currently widespread, there is an interest in devising
parallel preconditioners, which in this context should also guarantee, as far as possible, the
scalability of the iterative solver with respect to the number of processors employed.
In a parallel setting the perhaps simplest preconditioner is obtained using a block-Jacobi

procedure, where each block is allocated to a processor and is possibly approximated by
an incomplete factorization [1]. This approach may work well for simple problems, yet its
performance degrades rapidly as the size of the matrix increases, and it has a poor scalability
[2]. A possible improvement consists in enriching the factorization, to use a multi-level method
[3], to use approximate inverses or to resort to AMG methods [4–6].
In this work an algebraic preconditioner based on the Schwarz method has been developed.

It can be used as a black-box tool which requires the matrix entries and the topology of the
domain partition and it can in principle be applied to any non-singular matrix. The perfor-
mances of the proposed preconditioners are reported for a simple test case, as well as for
problems arising from compressible Euler equations in three dimensions. In the latter case
the equations have been discretized using a second-order multidimensional upwind technique,
while pseudo-time stepping is performed by an implicit Euler scheme.
The paper is organized as follows. Section 2 gives a brief description of the Schwarz

method and Section 3 introduces the coarse operator based on an agglomeration procedure.
Numerical results are given in Section 4, where some insight on the discretization scheme
adopted for the solution of the �uid dynamics problem is provided. Conclusions are drawn in
Section 5.

2. THE SCHWARZ PRECONDITIONER

The Schwarz method is a well-known parallel technique based on a domain decomposition
strategy. It is in general a rather ine�cient solver, however it is a quite popular parallel
preconditioner. Its popularity derives from its generality and simplicity of implementation. The
procedure is as follows. Let us decompose the computational domain � into M subdomains
�(i); i=1; : : : ; M , such that

⋃M
i=1�

(i) =� and �(i)∩�( j) = ∅ for i �= j. To introduce a region
of overlap, these subdomains are extended to �̃(i) by adding to each �(i) all the elements
of � that have at least one node in �(i). In this case, the overlap is minimal. More overlap
can be obtained by recursively repeating this procedure. A parallel solution of the original
system is then given by an iterative procedure involving local problems in each �̃(i), where
on @�̃(i)\� Dirichlet conditions are applied by imposing the latest values available from the
neighbouring subdomains. The increase of the amount of the overlap among subdomains
has a positive e�ect on the convergence of the iterative procedure, at the price of a more
computationally expensive method. Furthermore, the minimal overlap variant may exploit the
same data structure used for the parallel matrix–vector product in the outer iterative solver,
thus allowing a very e�cient implementation with respect to memory requirements (this is
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usually not anymore true for wider overlaps). In the numerical results, presented later in this
paper, the minimal overlap strategy has been used, that is, an overlap of width of one element
only. See References [7, 8] for more details.

3. THE AGGLOMERATION COARSE OPERATOR

The use of an agglomeration procedure to build the coarse operator for a Schwarz precon-
ditioner has been investigated in Reference [9] for elliptic problems. Here, this technique is
extended and generalized and applied it to non-self-adjoint problems.
For the sake of simplicity, let us consider the discrete variational problem:

�nd uh∈Vh such that:
a(uh; vh)= (f; vh) for ∀vh∈Vh

where uh; vh; f : �→R; �⊂Rd; d=2; 3, a(·; ·) is a bi-linear form and Vh is a �nite-dimensional
Hilbert space of (possibly vector) functions in �. (u; v) denotes the L2 scalar product, i.e.
(u; v)=

∫
� uv d�. In the following Vh will be the space of �nite element functions de�ned on

a triangulation of � and �(i)k is the basis function associated to the kth mesh node of �(i). n(i)

is the number of basis function associated to �(i). Vh is a �nite-dimensional space, equipped
with piecewise linear basis functions.
A coarse space is built as follows. Let us consider for each sub-domain the set {R(i)s ∈Rn(i) ,

s=1; : : : ; l(i)} of linearly independent nodal weights R(i)s =(�(i)s;1; : : : ; �(i)s; n(i) ).
The value l(i) represents the (local) dimension of the coarse operator on the sub-domain

�(i), while M is the number of subdomains. Clearly it is required that, for all i; l(i)6n(i) and,
in general, l(i)�n(i): l indicates with the global dimension of the coarse space, l=∑M

i=1 l
(i).

With the help of the vectors R(i)s , it is possible to de�ne a set of local coarse space functions
as linear combination of basis functions of Vh, i.e.

V
(i)
H =

{
z(i)s : �→R | z(i)s =

n(i)∑
k=1
�(i)s; k�

(i)
k ; s=1; : : : ; l

(i)

}

It is immediate to verify that the functions in V
(i)
H are linearly independent. Finally, the set

VH =
⋃M
i=1V

(i)
H is the base of the global coarse grid space VH , i.e. VH =span{VH}.

Note that VH ⊂Vh as it is built by linear combinations of function in Vh. Any function
WH ∈VH may be written as

WH =
M∑
i=1

l(i)∑
s=1
W (i)
s z

(i)
s (2)

where the W (i)
s are the ‘coarse’ degrees of freedom.

Finally, the coarse problem is built as

�nd UH ∈VH such that
a(UH ;WH )=f(WH ) ∀WH ∈VH (3)
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The interpolation operator RTH :VH →Vh is de�ned as a rectangular n×l matrix whose columns
correspond to the nodal weight R(i)s , i.e.

RTH =[R
(1)
1 : : : R(1)l(1) : : : R

(M)
l(M) ] (4)

where the R(i)s are column vectors. The restriction operator will simply be the transpose of
RTH . It is clear from (4) that RH strongly depends on the choice of the nodal weights.
Furthermore, the coarse matrix and the right-hand side of problem (3) can be written as

AH =RHARTH and fH =RH f .
The condition imposed on the R(i)s guarantees that the columns of RH are linearly indepen-

dent. Thus, if A is non-singular, symmetric and positive de�nite, then also AH is non-singular,
symmetric and positive de�nite.
For the numerical results later presented, the construction of the R(i)s has been obtained

using the following procedure. Each sub-domain �̃i has been partitioned into Nparts connected
parts, indicated in the following as !(i)s with s=1; : : : ; Nparts. The coarse matrix is built by
taking for all sub-domains l(i) =Nparts, while the elements of R(i)s are de�ned following the
rule

�(i)s; k =

{
1 if node k belongs to !(i)s
0 otherwise:

As already explained, the coarse grid operator is used to ameliorate the scalability of a
Schwarz-type parallel preconditioner PS. By notation, PACM indicates a preconditioner aug-
mented by the application of the coarse operator (ACM stands for agglomeration coarse
matrix). In particular, two possible strategies for its construction are here illustrated.
A one-step preconditioner, PACM;1, may be formally written as

P−1
ACM;1 =P

−1
S + A−1

ACM

where A−1
ACM =R

T
HA

−1
H RH . This preconditioner corresponds to an additive application of the

coarse operator.
An alternative formulation adopts the following two-step Richardson method:

un+1=2 = un + A−1
ACMr

n

un+1 = un+1=2 + P−1
S rn+1=2

(5)

where rn and un are, respectively, the residual and the approximate solution at the n-step of
the outer iterative solver. The corresponding preconditioning matrix can be formally written as

P−1
ACM;2 =P

−1
S + A−1

ACM − P−1
S AA−1

ACM (6)

4. NUMERICAL RESULTS

The numerical tests have been conducted on a SGI Origin 3000 computer, equipped with
32 MIPS R14000 processors with 500 Mhz and 512 Mbytes of memory. The communicator
is MPI. For the solution of the linear system the AZTEC library [10] has been used. This
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Figure 1. 3D Poisson problem. Comparison among PS and PACM; 2. On the left, convergence history
using 4 processors and 125.000 and 512.000 unknowns. On the right, CPU-time in seconds using
PS and PACM; 2 with increasing dimension of the coarse matrix. PS with 1 processor means that the

preconditioner is an ILU(0) decomposition of matrix A.

library has been extended to include the preconditioners previously described; these extensions
are freely available contacting the author. As regards the partitioning software, the package
METIS [11] have been used.
For the Schwarz preconditioner described in Section 2, and always indicated with PS, an

overlap of 1 element among the sub-domains have been used. The local problems are solved
inexactly using an ILU(0) decomposition.

4.1. 3D Poisson problem

Consider the following Poisson problem:

−�u=f in �
u=0 on @�

(7)

where �= (0; 1) × (0; 1) × (0; 1). The �nite element discretization makes use of piece-wise
constant function on a regular mesh. The linear system has been solved using GMRES(60), up
to a tolerance on the relative residual ‖r‖=‖r0‖ of 10−6. The right-hand side is made up of 1’s.
The picture on the left of Figure 1 compares the performances of PS and PACM;2, keeping

�xed the number of processors. As one may notice, the convergence is signi�cantly faster
using the algebraic coarse correction than only using PS. However, the CPU-time needed to
solve the linear system may increase, as reported in the table on the right side of Figure 1
for di�erent values of Nparts. 1, 2 and 4 processors have been used in the computations. One
may note that the coarse correction may lead to better CPU-time even in a serial implemen-
tation (that is, added to an incomplete factorization of the whole matrix). Figure 2 shows the
in�uence of the coarse matrix size l=Nparts ×M on the converge history. The total number
of unknowns is kept �xed and it is equal to 125.000 (for the picture on the left) and to
512.000 (for the picture on the right). As expected, increasing the value of l leads to a faster
convergence of the iterative method.
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Figure 2. 3D Poisson problem with 125.000 unknowns (on the left) and 512.000 unknowns (on the
right). Comparison between PS and PACM; 2 for some values of N -parts and using 4 processors.

4.2. The compressible Euler equations

Before presenting the numerical results concerning the Euler equations, a brief insight will be
given about the application problem considered in this paper, namely inviscid compressible
�ow around aeronautical con�gurations, and the numerical scheme adopted.
The Euler equations govern the dynamics of compressible inviscid �ows and can be written

in conservation form as

@U
@t
+

d∑
j=1

@Fj
@xj

=0 in �⊂Rd; t¿0 (8)

with the addition of suitable boundary conditions on @� and initial conditions at t=0. Here,
U and Fj are the vector of conservative variables and the �ux vector, respectively de�ned as

U=



�
�ui
�E


 ; Fj=




�uj
�uiuj + p�ij
�Huj




with i=1; : : : ; d; d=2; 3. u=(u1; : : : ; ud) is the velocity vector, � the density, p the pressure,
E the speci�c total energy, H the speci�c total enthalpy and �ij the Kronecker symbol.
Any standard spatial discretization applied to the Euler equations leads eventually to a

system of ODE in time, which may be written as dU=dt=R(U ), where U =(U1; U2; : : : ; Un)T

is the vector of unknowns with Ui=Ui(t) and R(U ) the result of the spatial discretization of
the Euler �uxes. An implicit two-step scheme applied to (8), for instance a backward Euler
method, yields

Un+1 −Un=�tR(Un+1) (9)

where �t is in general the time step but may also be a diagonal matrix of local time steps
when the well-known ‘local time stepping’ technique is used to accelerate convergence to
steady-state. The non-linear problem (9) may be solved, for instance, by employing a Newton
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Figure 3. Mach number contours around a M6 wing. The computation has been performed using a grid
composed by 316 275 nodes. The free-stream Mach number is 0.84 and the angle of attack is 3.06.

A lambda shock is formed near the tip of the wing.

iterative procedure, which computes successive approximations U(k) of Un+1 by solving[
�t
@R
@U
(U(k))− I

]
(U(k+1) −U(k))=U(k) −Un −�tR(U(k)); k=0; : : : (10)

with U(0) =Un. Thus, the original non-linear problem gives rise to a series of linear systems
which will be �nally tackled by the proposed parallel techniques. In this work, being interested
in the steady state solutions only, just a single iteration of the Newton procedure (10) is
performed.
The code THOR was used for the numerical experiments. This code, developed at the von

Karman Institute (Belgium), uses for the spatial discretization the multidimensional upwind
�nite element scheme [12].
The following test cases have been considered: FALCON 45k, with the free-stream Mach

number M∞=0:45 and an angle of attach �=1, on a grid made up of 45 387 nodes,
M6 23k;M6 42k;M6 94k and M6 316k with M∞=0:84 and �=3:06, with grids of respec-
tively, 23 008, 42 305, 94 493 and 316 275 nodes. FALCON 45k concerns the �ow �eld around
a Falcon aircraft. Although the mesh is rather coarse, this test case is interesting since it corre-
sponds to a complete con�guration of an airplane, with fuselage, wings, nacells and aleirons.
The resulting �ow �eld is subsonic. The ONERA-M6 wing is a classic CFD validation case
for external �ows because of its simple geometry combined with complexities of transonic
�ow [13]. For the prescribed boundary conditions, the �ow around the ONERA-M6 wing is
transonic, and a lambda shock is formed near the tip of the wing. Mach number countours
are depicted in Figure 3.
For all of them, the starting solution is the constant-�eld, and the CFL number varies from

10 to 10+5, multiplied each time step by a factor 2. A �rst-order scheme for the spatial
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Figure 4. FALCON 45k. Iterations to converge with di�erent values of N -parts for PACM; 1 (left) and
PACM; 2 (right). Sixteen processors have been used in the computations.
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Figure 5. FALCON 45k. Iterations to converge (left) and CPU-time (right) using di�erent pre-
conditioners and di�erent values of N -parts. Sixteen processors have been used in the computations.

discretization has been used. The computations are stopped when the 2-norm of the density
residual is less than 10−6. As previously described, at each time step a linear system has to
be solved. This is done using GMRES(60), up to a tolerance on the relative residual ‖r‖=‖r0‖
of 10−6. The starting solution is the zero vector.
In Figure 4 the in�uence of the local dimension of the coarse grid Nparts is reported for

PACM;1 and PACM;2, using 16 processors. The value of Nparts does not a�ect remarkably the
convergence of GMRES, unless the CFL number is large enough (as previously stated, the
CFL number is multiplied by 2.0 at each time level). The two-level preconditioner seems a
better choice from the point of view of both iterations to converge and CPU time, especially
for small values of Nparts, as one may notice in Figure 5.
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Figure 6. M6 94k. Iterations to converge with PS and PACM; 2 (left), and iterations to converge with
PACM; 2 using two di�erent values of Nparts (right). In the computations 16 processors have been used.

23 k, 42 k and 94 k refer to the test cases M6 23k;M6 42k and M6 94k, respectively.

Finally, from Figure 6, one can note that, for the two-level preconditioner, the positive
in�uence of the agglomeration procedure on the number of iterations to converge is not
a�ected by the mesh size.

5. CONCLUSIONS

A coarse correction operator based on an agglomeration procedure that requires the matrix
entries only has been presented. This procedure does not require the construction of a coarse
grid, a step that can be di�cult or computationally expensive for real-life problems on unstruc-
tured grids. A single-level and a two-level preconditioner which adopt this coarse correction
have been presented. The latter seems to be a better choice from the point of view of both
iterations to converge and CPU time. Results have been presented for problems obtained from
the three-Dimensional compressible Euler equations where the procedure has shown a good
performance. The proposed coarse operator is rather easy to build and may be applied to very
general cases, and it may be generalized by employing di�erent strategies for building the
weights R.
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